Notas de Matemáticas 6

Sep-Dic 2007

Clase 1. Superficies parametrizadas y áreas

Hasta ahora hemos estudiado superficies definidas como gráficas de funciones de la forma z = f(x, y). El conjunto $S = \{(x, y, z) \in \mathbb{R}^3 : z^3 - z + x = 0\}$ corresponde a una hoja que se dobla sobre si misma, respecto del plano xy, como se muestra en la figura (1). Como podemos observar, S es una superficie que no es la gráfica de una función de la forma z = f(x, y), ya que viola la definición de función: para el punto $(x_0, y_0) \in \mathbb{R}^2$ debe existir un único punto z_0 tal que $(x_0, y_0, z_0) \in S$.

 $(x_0, y_0, 0)$

Figura 1: La superficie $S = \{(x, y, z) \in \mathbb{R}^3 : z^3 - z + x = 0\}$ no es de la forma z = f(x, y).

Extendemos nuestra definición de superficie de la siguiente manera

Definición 1.1. Una superficie parametrizada está definida por una función ϕ , $\phi: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$, donde \mathcal{D} es algún dominio en \mathbb{R}^2 . La superficie S (geométrica) correspondiente a la función ϕ (parametrización) es su imagen, $S = \phi(\mathcal{D})$.

A veces diremos que S es la superficie parametrizada y que ϕ es su parametrización. Usaremos la notación $\phi(u,v)=(x(u,v),y(u,v),z(u,v)), (u,v)\in\mathcal{D}$, donde uv representará el plano cartesiano en \mathcal{D} . Si ϕ es diferenciable, es decir, si las funciones reales x=x(u,v), y=y(u,v) y z=z(u,v) son diferenciables, diremos que S es una superficie diferenciable. En forma análoga si ϕ es de clase \mathcal{C}^1 (continuamente diferenciable) diremos que S es de clase \mathcal{C}^1 .

De forma natural obtenemos dos vectores denotados por T_u y T_v tangentes a curvas sobre la superficie S de la manera siguiente: suponemos que ϕ es diferenciable en el punto $(u_0, v_0) \in \mathcal{D} \subset \mathbb{R}^2$. Si fijamos $u = u_0$ constante, se tiene (en el plano uv) un segmento de recta paralelo al eje v, obteniéndose así una función de \mathbb{R} en \mathbb{R}^3 dada por $t \to \phi(u_0, t) = (x(u_0, t), y(u_0, t), z(u_0, t))$,

cuya imagen es una curva sobre la superficie $S = \phi(\mathcal{D})$. El vector tangente a esta curva en el punto $\phi(u_0, v_0)$ está dado por

$$T_v = \left(\frac{\partial x}{\partial v}(u_0, v_0), \frac{\partial y}{\partial v}(u_0, v_0), \frac{\partial z}{\partial v}(u_0, v_0)\right).$$

En forma análoga, si fijamos $v = v_0$ constante, se tiene un segmento de recta paralelo al eje

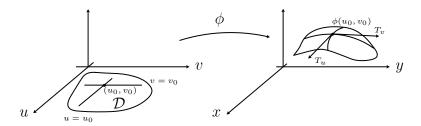


Figura 2: Vectores tangentes a una superficie parametrizada.

u, obteniéndose así una función de \mathbb{R} en \mathbb{R}^3 dada por $t \to \phi(t, v_0) = (x(t, v_0), y(t, v_0), z(t, v_0))$, cuya imagen es una curva sobre la superficie $S = \phi(\mathcal{D})$. El vector tangente a esta curva en el punto $\phi(u_0, v_0)$ está dado por

$$T_u = \left(\frac{\partial x}{\partial u}(u_0, v_0), \frac{\partial y}{\partial u}(u_0, v_0), \frac{\partial z}{\partial u}(u_0, v_0)\right).$$

Como los vectores T_u y T_v son tangentes a dos curvas en el punto $\phi(u_0, v_0)$ sobre la superficie entonces, si $T_u \times T_v \neq 0$, ellos determinan el plano tangente a la superficie en dicho punto ya que $T_u \times T_v$ sería normal a la superficie.

Definición 1.2. La superficie $S = \phi(\mathcal{D})$ se dice suave en $\phi(u_0, v_0)$ si $T_u \times T_v \neq 0$ en el punto (u_0, v_0) . La superficie S se dice suave si lo es en todos sus puntos. A veces se dice que $T_u \times T_v$ es el producto vectorial fundamental.

Definición 1.3. Sea S una superficie parametrizada por $\phi : \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$, $S = \phi(\mathcal{D})$, suave en $\phi(u_0, v_0)$, es decir, con $T_u \times T_v \neq 0$ en (u_0, v_0) . Se define el plano tangente a la superficie en $\phi(u_0, v_0)$ como el plano determinado por los vectores T_u y T_v .

Así $n = T_u \times T_v$ evaluado en el punto (u_0, v_0) es un vector normal a S y la ecuación del plano tangente en $(x_0, y_0, z_0) = \phi(u_0, v_0)$ a la superficie está dado por $n \cdot (x - x_0, y - y_0, z - z_0) = 0$, es decir, $n_1(x - x_0) + n_2(y - y_0) + n_3(z - z_0) = 0$, al escribir $n = (n_1, n_2, n_3)$.

Definición 1.4 (Área de una superficie). Sea S una superficie suave parametrizada, $S = \phi(\mathcal{D}), \phi : \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$. Definimos el área de la superficie S por

$$A(S) = \iint_{\mathcal{D}} \|T_u \times T_v\| \, \mathrm{d} u \, \mathrm{d} v,$$

donde $||T_u \times T_v||$ es la norma (Euclídea) del producto vectorial fundamental $T_u \times T_v$.

Si S es una superficie suave a trozos, unión de superficies S_i suaves, su área será la suma de las áreas de las S_i , suponiendo (siempre) que cada una de las superficies S_i es parametrizada con las siguientes propiedades:

- (i) $\phi_i: \mathcal{D}_i \subset \mathbb{R}^2 \to \mathbb{R}^3, S_i = \phi_i(\mathcal{D}_i).$
- (ii) \mathcal{D}_i es una región elemental en el plano.
- (iii) ϕ_i es de clase \mathcal{C}^1 y es inyectiva, excepto (posiblemente) en la frontera de \mathcal{D}_i .
- (iv) S_i es suave, excepto en (a lo sumo) un número finito de puntos.

Usando determinantes jacobianos,

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u},$$

se prueba con facilidad que

$$T_u \times T_v = \left(\frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}, \frac{\partial(x,y)}{\partial(u,v)}\right),$$

así

$$A(S) = \iint_{\mathcal{D}} \sqrt{\left[\frac{\partial(y,z)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(z,x)}{\partial(u,v)}\right]^2 + \left[\frac{\partial(x,y)}{\partial(u,v)}\right]^2} \, \mathrm{d} u \, \mathrm{d} v.$$

Observación 1.1. A una superficie S, gráfica de una función z = f(x, y), donde $(x, y) \in \mathcal{D}$, podemos parametrizarla (parametrización usual) con $\phi(u, v) = (u, v, f(u, v))$ para $(u, v) \in \mathcal{D}$. Si f es de clase \mathcal{C}^1 , la parametrización es de tipo \mathbb{C}^1 y suave (obviamente inyectiva) y usando los vectores

$$T_u = \left(1, 0, \frac{\partial f}{\partial u}\right), \quad T_v = \left(0, 1, \frac{\partial f}{\partial v}\right), \quad T_u \times T_v = \left(-\frac{\partial f}{\partial u}, -\frac{\partial f}{\partial v}, 1\right),$$

se tiene la fórmula del área

$$A(S) = \iint_{\mathcal{D}} \sqrt{1 + \left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2} \, du \, dv.$$

Ejemplo 1.1. El cilindro de ecuación $(x-1)^2 + (y-1)^2 = r^2$, r > 0, corta en el cono $z = \sqrt{x^2 + y^2}$ una superficie acotada S. Calcule el área de S.

Solución. Una parametrización de S en el cono es $\phi(u,v)=(u,v,\sqrt{u^2+v^2}), \mathcal{D}=\{(u,v)\in\mathbb{R}^2: (u-1)^2+(v-1)^2\leq r^2\}$. Se calcula $T_u\times T_v=(-f_u,-f_v,1),$

$$T_u \times T_v = \left(\frac{-u}{\sqrt{u^2 + v^2}}, \frac{-v}{\sqrt{u^2 + v^2}}, 1\right)$$
$$||T_u \times T_v|| = \sqrt{2}.$$

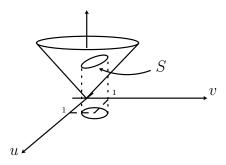


Figura 3: Parametrizando S: $\phi(u, v) = (u, v, \sqrt{u^2 + v^2})$

Luego

$$A(S) = \iint\limits_{\mathcal{D}} \sqrt{2} \, du \, dv = \sqrt{2} \iint\limits_{(u-1)^2 + (v-1)^2 \le r^2} du \, dv = \sqrt{2} \, \text{Area}(\mathcal{D}) = \sqrt{2} \, \pi r^2.$$

Ejemplo 1.2. Calcular el área de la parte S del cono $x^2 + y^2 = z^2$, $z \ge 0$, que está dentro de la región esférica $x^2 + y^2 + z^2 \le 6z$.

Solución. La superficie $x^2 + y^2 + z^2 = 6z$ y el cono $z^2 = x^2 + y^2$ se intersecan en el punto (0,0,0) y, en el plano z=3, la circunferencia $x^2 + y^2 = 9$, ver figura (4).

En lugar de la parametrización usual del cono, dada por $z = f(x, y) = \sqrt{x^2 + y^2}$, usaremos la parametrización $\phi(r, \theta) = (r\cos(\theta), r\sin(\theta), r)$. Note que $x = r\cos(\theta)$, $y = r\sin(\theta)$ y z = r satisfacen $x^2 + y^2 = z^2$. Además $\mathcal{D} = \{(r, \theta) \in \mathbb{R}^2 : 0 \le r \le 3, 0 \le \theta \le 2\pi\}$. Calculamos $T_r \times T_\theta = (-r\cos(\theta), -r\sin(\theta), r)$ y $||T_r \times T_\theta|| = r\sqrt{2}$. Luego

$$A(S) = \iint_{\mathcal{D}} ||T_r \times T_\theta|| \, \mathrm{d} r \, \mathrm{d} \theta = \sqrt{2} \int_0^{2\pi} \int_0^3 r \, difr \, \mathrm{d} d\theta = 9\pi\sqrt{2}.$$

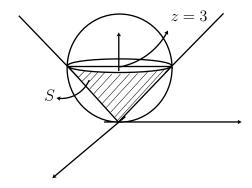


Figura 4: Parametrizando S: $\phi(r,\theta) = (r\cos\theta, r\sin\theta, r)$.

Clase 2. Integrales de Superficie de Funciones Escalares.

Consideremos una superficie S parametrizada por una función $\phi: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$, $\phi(\mathcal{D}) = S$ y $\phi(u,v) = (x(u,v),y(u,v),z(u,v))$. Sea $f:S \subset \mathbb{R}^3 \to \mathbb{R}$ una función continua definida en S (campo escalar en S).

Definición 2.1. Se define la integral de superficie de f sobre S por

$$\iint_{S} f(x, y, z) dS = \iint_{\mathcal{D}} f(\phi(u, v)) \|T_u \times T_v\| du dv,$$

donde $T_u \times T_v$ es el producto vectorial fundamental asociado a la parametrización ϕ .

Si f es identicamente 1 se obtiene el área de S. Se pueden dar otras interpretaciones de esta integral. Así, por ejemplo, si f es la función que representa la densidad de masa de la superficie S, se interpreta (la integral) como la masa M de la superficie, es decir,

$$M = \iint_{S} f(x, y, z) \, dS.$$

De esta manera las integrales

$$\bar{x} = \frac{1}{M} \iint_{S} x f(x, y, z) dS$$

$$\bar{y} = \frac{1}{M} \iint_{S} y f(x, y, z) dS$$

$$\bar{z} = \frac{1}{M} \iint_{S} z f(x, y, z) dS$$

dan las coordenadas $(\bar{x}, \bar{y}, \bar{z})$ del centro de masa de la superficie.

Observación 2.1. Si S corresponde a la gráfica de una función z=g(x,y), usando la parametrización $x=u,\,y=v,\,z=g(u,v)$ se obtiene que

$$||T_u \times T_v|| = \sqrt{1 + g_u^2 + g_v^2} \quad y$$

$$\iint_S f \, dS = \iint_{\mathcal{D}} f(u, v, g(u, v)) \sqrt{1 + g_u^2 + g_v^2} \, du \, dv.$$

Además podemos describir la gráfica S como el conjunto solución de la ecuación

$$\varphi(x, y, z) = 0$$
, siendo $\varphi(x, y, z) = z - g(x, y)$.

Un vector normal (a S) es $\nabla \phi$, es decir, $\eta = (-g_x, -g_y, 1)$. Si la superficie se describe por la ecuación $\psi(x, y, z) = g(x, y) - z = 0$ se tendría que $\nabla \psi = (g_x, g_y, -1)$ es otro vector normal a S en dirección opuesta a η (en el mismo punto de S).

Ejemplo 2.1. Calcular la masa M de la superficie definida por el paraboloide $z=2-(x^2+y^2)$ sobre el plano z=0 si la densidad de masa está dada por $\varphi(x,y,z)=x^2+y^2$.

Solución. Usando la parametrización $\phi(x,y)=(x,y,f(x,y)), \mathcal{D}: x^2+y^2\leq 2$ $(z=f(x,y)=2-x^2-y^2)$ se obtiene que $T_x\times T_y=(2x,2y,1)$ y $||T_x\times T_y||=\sqrt{1+4x^2+4y^2}$. Luego

$$M = \iint_{S} \phi(x, y) \|T_x \times T_y\| \, dx \, dy$$

$$= \iint_{\mathcal{D}} (x^2 + y^2) \sqrt{1 + 4x^2 + 4y^2} \, dx \, dy.$$

Figura 5: Parametrizando el paraboloide

Con el uso de coordenadas polares, $x = r\cos(\theta) \qquad 0 \le r \le \sqrt{2} \\ y = r\sin(\theta) \qquad 0 \le \theta \le 2\pi$, se obtiene

$$M = \int_0^{2\pi} \int_0^{\sqrt{2}} r^3 \sqrt{1 + 4r^2} \, dr \, d\theta = \frac{149\pi}{30}.$$

Observación 2.2. En la notación de la integral de funciones escalares usamos S en lugar de ϕ . En la clase siguiente aparece que esta integral de superficie es independiente de la parametrización ϕ que se elija.

Clase 3. Integrales de Superficie de Funciones Vectoriales.

Consideremos una superficie S parametrizada por una función $\phi : \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$, $\phi(\mathcal{D}) = S$ y $\phi(u, v) = (x(u, v), y(u, v), z(u, v))$. Sea F un campo vectorial (continuo) definido en S.

Definición 3.1. La integral de superficie del campo F sobre la superficie parametrizada $S = \phi(\mathcal{D})$, denotada por $\iint F \cdot dS$, se define por

$$\iint_{\phi} F \cdot dS = \iint_{\mathcal{D}} F(\phi(u, v)) \cdot (T_u \times T_v) \, du \, dv.$$

De nuevo, $T_u \times T_v$ denota el producto vectorial fundamental asociado a ϕ . Enfatizamos el uso de ϕ en esta definición en lugar de S.

Definición 3.2. Intuitivamente, una superficie orientada S es una superficie con 2 lados (caras), uno de ellos el lado exterior (o cara positiva) y el otro, el lado interior (o cara negativa). En toda superficie orientada, existen 2 vectores normales unitarios (apuntando hacia afuera de la superficie) η_1 y η_2 tales que al describir η_2 una curva cerrada en S y regresar a su punto inicial se obtiene el vector η_2 ; y al girar η_1 sobre una curva cerrada en S y regresar a su punto inicial se obtiene η_1 . En cada punto $(x, y, z) \in S$ los dos vectores satisfacen $\eta_2 = -\eta_1$. Cada una de estas normales se puede asociar a un lado de la superficie y así, especificamos un lado de una superficie orientable, escogiendo (en cada punto) uno de los dos vectores normales unitarios η que apunte hacia afuera en ese punto de S (regla de la mano derecha).

La superficie es no orientable cuando al describir η_2 una curva cerrada en S y regresar a su punto de partida, se obtiene el vector η_1 . Un ejemplo de una superficie no orientable es la llamada cinta (o banda) de Möbius (ver figura7).

Si $\phi: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}^3$ es una parametrización de una superficie orientada S, suave en $\phi(u_0, v_0) \in \mathcal{D}$ entonces está definido el vector normal unitario dado por

$$\frac{T_{u_0} \times T_{v_0}}{\|T_{u_0} \times T_{v_0}\|}.$$

Si $\eta = \eta(\phi(u_0, v_0))$ es el vector normal unitario a S en $\phi(u_0, v_0)$ apuntando desde el lado elegido positivo de S (S es orientada) entonces se tiene

$$\frac{T_{u_0} \times T_{v_0}}{\|T_{u_0} \times T_{v_0}\|} = \eta \qquad \text{\'o} \qquad \frac{T_{u_0} \times T_{v_0}}{\|T_{u_0} \times T_{v_0}\|} = -\eta.$$

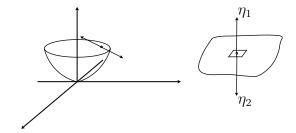


Figura 6: Superficies Orientables.

Figura 7: Banda de Möbius.

Definición 3.3. Se dice que la parametrización ϕ preserva la orientación si $\frac{T_u \times T_v}{\|T_u \times T_v\|} = \eta$ en todo punto de \mathcal{D} . En caso contrario, es decir, si $\frac{T_u \times T_v}{\|T_u \times T_v\|} = -\eta$ se dirá que ϕ invierte la orientación.

Teorema 3.1. Sea S una superficie orientada y sean ϕ_1 y ϕ_2 dos parametrizaciones suaves de S. Sea F un campo vectorial continuo definido en S y sea f, $f: S \to \mathbb{R}$ un campo escalar continuo en S. Entonces

- (i) Si ϕ_1 y ϕ_2 preservan la orientación será $\iint_{\phi_1} F \cdot dS = \iint_{\phi_2} F \cdot dS$.
- (ii) Si una de las parametrizaciones preserva la orientación y la otra la invierte es $\iint\limits_{\phi_1} F\cdot \mathrm{d}\,S = -\iint\limits_{\phi_2} F\cdot \mathrm{d}\,S.$
- (iii) $\iint_{\phi_1} f \, dS = \iint_{\phi_2} f \, dS$. En particular el área (de una superficie parametrizada) es independiente de la parametrización: $A(S) = \iint_{\phi_1} dS = \iint_{\phi_2} dS$, tomando f = 1.

Demostración: La demostración se puede hacer usando la fórmula del cambio de variables para integrales dobles.

Teorema 3.2. Sea S una superficie parametrizada suave orientada con vector normal unitario η . Sea F un campo vectorial (continuo) definido en S, entonces

$$\iint_{S} F \cdot dS = \iint_{S} (F \cdot \eta) dS.$$

Demostración: Si ϕ es una parametrización de S que conserva la orientación, entonces $\eta = \frac{T_u \times T_v}{\|T_u \times T_v\|}.$ Luego

$$\iint_{S} F \cdot dS = \iint_{\phi} F \cdot dS = \iint_{\mathcal{D}} F \cdot (T_{u} \times T_{v}) du dv = \iint_{\mathcal{D}} F \cdot \left(\frac{T_{u} \times T_{v}}{\|T_{u} \times T_{v}\|}\right) \|T_{u} \times T_{v}\| du dv$$
$$= \iint_{\mathcal{D}} (F \cdot \eta) \|T_{u} \times T_{v}\| du dv = \iint_{S} (F \cdot \eta) dS.$$

Observación 3.1. Si consideramos a F(x,y,z) como el campo de velocidad de un fluido, F(x,y,z) apuntando en la dirección en la cual el fluido se mueve a través de la superficie cerca del punto (x,y,z), entonces $\iint_S F \cdot \mathrm{d} S$ representa la cantidad neta de fluido que pasa a través de la superficie por unidad de tiempo, es decir, la razón o tasa de flujo. Por esta razón, en ocasiones llamaremos a esta integral $\iint_S F \cdot \mathrm{d} S$ flujo de F a través de la superficie S.

El volumen del paralelepípedo, ver figura (8), es el valor absoluto del triple producto $F \cdot (T_u \times T_v) \Delta u \Delta v$ y mide la cantidad de fluido que pasa a través del paralelogramo tangente por unidad de tiempo.

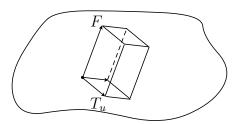


Figura 8: Flujo sobre una superficie.

Ejemplo 3.1. Consideremos las superficies $S_1 = \{(x,y,z): x^2 + y^2 + z^2 = 81, z \ge 0 \}$, $S_2 = \{(x,y,z): x^2 + y^2 \le 81, z = 0 \}$. Si $S = S_1 \cup S_2$ se orienta con la normal exterior a S, calcule el flujo (total) del campo F, F(x,y,z) = (-y,x,z), a través de S.

Solución.

(a) Parametrizamos S_1 con $z = f(x,y) = \sqrt{81 - x^2 - y^2}$, es decir, $\phi_1(x,y) = (x,y,\sqrt{81 - x^2 - y^2})$, $\mathcal{D}_1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 81\}$. Entonces $T_x \times T_y = (-f_x, -f_y, 1) = \left(\frac{x}{\sqrt{81 - x^2 - y^2}}, \frac{y}{\sqrt{81 - x^2 - y^2}}, 1\right)$. Este vector es normal saliendo, así que conserva la orientación η_1

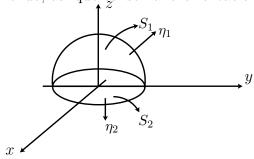


Figura 9: Flujo sobre $S, S = S_1 \cup S_2$.

Así,

Flujo(S₁) =
$$\iint_{\phi_1} F \cdot dS$$
=
$$\iint_{\mathcal{D}} (-y, x, \sqrt{81 - x^2 - y^2}) \cdot \left(\frac{x}{\sqrt{81 - x^2 - y^2}}, \frac{y}{\sqrt{81 - x^2 - y^2}}, 1\right) dx dy$$
=
$$\iint_{\mathcal{D}} \sqrt{81 - x^2 - y^2} dx dy$$
=
$$\int_{0}^{2\pi} \int_{0}^{9} \rho \sqrt{81 - \rho^2} d\rho d\theta = 486\pi.$$

(En la penúltima ecuación hemos hecho un cambio a coordenadas polares, esto es $x = \rho \cos(\theta) \ y = \rho \sin(\theta)$.

(b) Parametrizamos S_2 con z = f(x, y) = 0 (el plano xy). $T_x \times T_y = (-f_x, -f_y, 1) = (0, 0, 1)$

invierte la orientación η_2

Flujo
$$(S_2)$$
 = $-\iint_{\phi_2} F \cdot dS$
 = $-\iint_{\mathcal{D}} (-y, x, 0) \cdot (0, 0, 1) dx dy = 0.$

Por lo tanto, Flujo(S) = Flujo (S_1) + Flujo (S_2) = 486π

Ejemplo 3.2. Se considera el campo vectorial F dado por $F(x,y,z) = \left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3}\right)$, donde $r = r(x,y,z) = \sqrt{x^2 + y^2 + z^2}$. Sea S cualquier porción de la esfera $x^2 + y^2 + z^2 = 4$ orientada con la normal η exterior a la esfera. Demostrar que el flujo de F a través de S es proporcional al área de S, es decir, Flujo(S) = k Área(S)

Solución. Aplicando el gradiente a la función $\varphi(x,y,z)=x^2+y^2+z^2-4$, se tiene que $\nabla \varphi=(2x,2y,2z)$. El vector normal exterior es entonces $\frac{\nabla \phi}{\|\nabla \phi\|}$. Calculamos $\|\nabla \phi\|=\sqrt{4x^2+4y^2+4z^2}=2r$, y sobre la esfera que tiene radio 2 es $\|\nabla \phi\|=4$.

Así
$$\eta = \frac{1}{4}(2x, 2y, 2z) = \left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)$$
. Luego

$$\operatorname{Flujo}(S) = \iint_S F(x, y, z) \cdot \eta \, dS = \iint_S \left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3}\right) \cdot \left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right) dS.$$

Evaluando sobre la esfera de radio 2 es $r^3 = 8$, luego.

Flujo(S) =
$$\iint_S \frac{1}{16}(x, y, z) \cdot (x, y, z) dS = \frac{1}{16} \iint_S (x^2 + y^2 + z^2) dS$$
.

Pero en la esfera es $x^2 + y^2 + z^2 = 4$ y así

Flujo(S) =
$$\frac{4}{16} \iint_{S} ds = \frac{1}{4} \text{Area}(S),$$

de donde $k = \frac{1}{4}$.